
MPW PQR4 Proff and PrintProff
Release Notes

Introduction

Proff and PrintProff are a pair of components which provide profiling
and performance monitoring for programs compiled from MPW C and
MPW Object Pascal. Profiling is the dynamic recording for every
procedure/function call during program execution, of the identity of the
called procedure/function and the point from which it was called, e.g.,
statement n in procedure foo. Performance monitoring in the context of profiling is the recording of the time
spent in each such procedure/function. (For the remainder of this Note, the term “procedure” will be used to mean
“procedure or function.”) An arc is defined to be an execution of a procedure from a specific call site. For each arc
is recorded:

1.The number of times it was executed.

2.The cumulative flat time for the arc. The flat time is the amount of time spent executing the procedure. It does
not include time spent in callee procedures, provided these procedures were also monitored. Nor does it include
segment loading or profiling overhead for the current procedure but it does include some performance
monitoring and procedure call overhead for the procedure (if any) called directly by the current one. Note: If a
callee was not built with the profiling options or directives, the profiling code will think that the callee was
merely part of its caller.

3. The cumulative hierarchical time for the arc. The hierarchical time is the amount of time spent in this procedure,
plus the time spent in any procedures called by this one (directly or indirectly) before it returns to its caller. It
does not include segment loading or profiling overhead for the current procedure. However, the hierarchical
time does include this overhead for called procedures.

4. For calls across segments, the caller and the callee segment name and number.

Proff is a library (literally, Proff.o, contained in {MPW}Libraries:Libraries:) which contains the code that gathers
the profiling and performance data. In order to achieve the data collection, it is necessary to compile the subject
programs with the appropriate options and directives, the details differing slightly between C and Object Pascal, and
to include Proff.o in the link.

MPW PQR4 Proff and PrintProff 1 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

PrintProff is an MPW tool that processes the data file created by Proff and produces a human readable output.

Program Building

For both C and Object Pascal, specify -sym full on the command line. For C, specify -
trace on, or bracket the code to be monitored with #pragma trace on and #pragma trace off. For
Object Pascal, bracket the code to be monitored with {$D++} and {$D--}. Include both StdClib.o and Proff.o in
the link—StdClib.o is required even if all of the source is in Object Pascal. Specify -sym full on the Link
command line. In rare cases, the C compiler may optimize away the use of the A6 links which are required by
proff to find the right caller. To ensure that this does not occur, use -opt nodelink.

Execution Monitoring

Execution of a program that was built for monitoring will cause the
creation of an output file containing the performance data. This file will
be in the same directory as the target program and will have the
application name with .Proff appended as a suffix.

▲ Important: MPW tools create difficulties for application oriented debuggers and
performance monitors. The application is the MPW Shell, so the name of the output
file will be 'MPW Shell.Proff'. The user should change this name to <toolname>.Proff. ▲

Although the output file is intended to be processed by PrintProff, its format may be of interest. It consists of one-line records containing the following information:

caller segment number and byte offset, callee segment number and byte offset, number of times the arc executed, cumulative hierarchical time, and cumulative flat

time. The last line of the output file is simply a count of the number of arcs in the file. All numbers are given in hex.

MPW PQR4 Proff and PrintProff 2 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

An example follows:

 1 64 1 c 1 2fdbc0 24ef0
 1 134 1 a6 1 31db97 9076a
 1 1de 2 e 1 1bca7 e75
 1 270 3 c d 59076a4 8ecad
 1 29c 7 c 3 2abe7 464c
 3 50 5 10 4 b5a754 8eca
 3 56 5 25a 3 37fa85c 076a4
 3 5c 1 298 3 d2568 65b1
 3 4a 4 14a 3 1404055 5b1b6
 4 a2 4 10 40 18ecad9 9076
 4 15a 7 c 3 226bb 1404
 4 182 8 50 7 464ca 5a75
 4 1ec 4 10 7 65b1b6 85c
 4 206 7 4c 2 90f9 5a7
 e

Using PrintProff

PrintProff is an MPW tool which analyzes the .proff data file created by
running a program built for profiling. PrintProff uses as input the target
program’s .proff and .sym files. By default, both of these files have the same name as the target
program with the appropriate extension added. Also by default, PrintProff looks for them in the Shell’s current
directory. The output from PrintProff goes to standard output unless redirected to an output file. To run PrintProff
enter:

PrintProff TargetProgram

If the .proff and .sym files are in the current directory, TargetProgram is just the target’s terminal name. If they
are in some other directory (they must both be in the same one), TargetProgram must be a complete path
including the terminal name.

MPW PQR4 Proff and PrintProff 3 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

An example of the output from PrintProff follows:
1. main

Total: 22,103,748 H.µsecs. 185,050 F.µsecs. /1 call
(100.000 %H/ 0.837 %F)
Callers:
 0. %__MAIN

22,103,748 H.µsecs. 185,050 F.µsecs. /1 call

2. SkelMain
Total: 21,071,898 H.µsecs. 5,754,715 F.µsecs. /1 call

(95.332 %H/26.035 %F)
Callers:
 1. main.(51)

21,071,898 H.µsecs 5,754,715 F.µsecs. /1 call
1/Main -> 3/TransSkel

3. DoEvent
Total: 5,574,969 H.µsecs 3,168,383 F.µsecs. /63 calls

(25.222 %H/14.334 %F)
Callers:
 2. SkelMain.(15)

5,574,969 H.µsecs. 3,168,383 F.µsecs. /63 calls

4. LogEvent
Total: 5,489,880 H.µsecs. 101,050 F.µsecs. /63 calls

(24.837 %H/ 0.457 %F)
Callers:
 2. SkelMain.(14)

 5,489,880 H.µsecs. 101,050 F.µsecs. /63 calls
3/TransSkel -> 1/Main

5. DisplayText
Total: 4,546,138 H.µsecs. 4,128,112 F.µsecs. /225 calls

(20.567 %H/18.676 %F)
Callers:
 7. DisplayString.(1)

 2,601,034 H.µsecs. 2,371,566 F.µsecs. /120 calls
 8. DisplayChar.(1)

 1,837,651 H.µsecs. 1,651,699 F.µsecs. /104 calls
 1. main.(15)

 107,451 H.µsecs. 104,846 F.µsecs. /1 call
1/Main -> 3/TransSkel

MPW PQR4 Proff and PrintProff 4 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

6. Background
Total: 3,823,245 H.µsecs. 785,805 F.µsecs. /226 calls

(17.297 %H/ 3.555 %F)
Callers:
 2. SkelMain.(7)

 3,823,245 H.µsecs. 785,805 F.µsecs. /226 calls
3/TransSkel -> 1/Main

Known Bugs and Limitations

■ Because of conflicting uses of VIA Timer1, Proff.o cannot be applied to applications that use the Sound Manager or the Time Manager.

■ The Object Pascal compiler fails to insert the required profiling calls in the main program block, despite a request that it so do. The workaround is to enclose the actual main block by a

dummy block.

■ Proff.o assumes that procedures being profiled , and their call sites, are located in resources of type 'CODE' in the resource map of the target application with which Proff.o is linked. Any

resources added to the map after Proff.o first executes will not be monitored.

■ Currently, Proff.o needs two routines from StdClib.o (printf and sprintf). If the target program is Pascal, and isn't already
using StdClib.o, this must be linked in last.

■ The times reported for a recursive routine, as reached from each of its callers other than itself, are correct. However, the total hierarchical time reported for a directly or indirectly recursive

routine is too large because of the way in which direct or indirect calls of a routine from itself are summed and included in the total. An investigation of this behavior turned out to be

sufficiently interesting that a discussion of the matter is presented as Appendix C of these Release Notes.

■ Calls to exit() in C do not execute the function epilogues of any functions that have yet to return. This results in
zero time being reported for execution of those functions.

■ The procedure ExitToShell does not call any of the exit routines that had been installed by atExit. Such an exit
routine is used by Proff.o to write its output file. Therefore, if the host program calls ExitToShell, the output
file will not be generated.

MPW PQR4 Proff and PrintProff 5 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

■ Proff.o allocates its memory from Temporary Memory. If Temporary Memory is not available or insufficient then Proff.o will allocate its memory from the heap of the target application. If

this is also insufficient, proff.o will drop into the debugger and ask you to increase the application heap size. Proff.o allocates all its memory the first time that a monitored procedure

executes and will not move memory while the target program executes.

■ Proff.o does not yet monitor patch or interrupt handling code, or any code which executes when A5 does not belong to the application that was built for
monitoring.

MPW PQR4 Proff and PrintProff 6 Copyright Apple Computer, Inc.
Release Notes 1990-1991. All rights reserved.

